Induced minors and well-quasi-ordering

نویسندگان

  • Jaroslaw Blasiok
  • Marcin Kaminski
  • Jean-Florent Raymond
  • Théophile Trunck
چکیده

A graph H is an induced minor of a graph G if it can be obtained from an induced subgraph of G by contracting edges. Otherwise, G is said to be H-induced minor-free. Robin Thomas showed that K4-induced minor-free graphs are well-quasi-ordered by induced minors [Graphs without K4 and well-quasi-ordering, Journal of Combinatorial Theory, Series B, 38(3):240 – 247, 1985]. We provide a dichotomy theorem for H-induced minor-free graphs and show that the class of H-induced minor-free graphs is well-quasi-ordered by the induced minor relation if and only if H is an induced minor of the Gem (the path on 4 vertices plus a dominating vertex) or of the graph obtained by adding a vertex of degree 2 to the complete graph on 4 vertices. To this end we proved two decomposition theorems which are of independent interest. Similar dichotomy results were previously given for subgraphs by Guoli Ding in [Subgraphs and well-quasi-ordering, Journal of Graph Theory, 16(5):489–502, 1992] and for induced subgraphs by Peter Damaschke in [Induced subgraphs and well-quasiordering, Journal of Graph Theory, 14(4):427–435, 1990].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-quasi-ordering H-contraction-free graphs

A well-quasi-order is an order which contains no infinite decreasing sequence and no infinite collection of incomparable elements. In this paper, we consider graph classes defined by excluding one graph as contraction. More precisely, we give a complete characterization of graphs H such that the class of H-contraction-free graphs is well-quasi-ordered by the contraction relation. This result is...

متن کامل

Branch-Width and Well-Quasi-Ordering in Matroids and Graphs

We prove that a class of matroids representable over a fixed finite field and with bounded branch-width is well-quasi-ordered under taking minors. With some extra work, the result implies Robertson and Seymour’s result that graphs with bounded tree-width (or equivalently, bounded branch-width) are well-quasi-ordered under taking minors. We will not only derive their result from our result on ma...

متن کامل

LINKED TREE-DECOMPOSITIONS OF INFINITE REPRESENTED MATROIDS By

It is natural to try to extend the results of Robertson and Seymour’s Graph Minors Project to other objects. As linked tree-decompositions (ltds) of graphs played a key role in the Graph Minors Project, establishing the existence of ltds of other objects is a useful step towards such extensions. There has been progress in this direction for both infinite graphs and matroids. Kříž and Thomas pro...

متن کامل

Well - quasi - ordering versus clique - width ∗

Does well-quasi-ordering by induced subgraphs imply bounded clique-width for hereditary classes? This question was asked by Daligault, Rao and Thomassé in [7]. We answer this question negatively by presenting a hereditary class of graphs of unbounded clique-width which is well-quasi-ordered by the induced subgraph relation. We also show that graphs in our class have at most logarithmic clique-w...

متن کامل

Well-quasi-ordering and finite distinguishing number

Balogh, Bollobás and Weinreich showed that a parameter that has since been termed the distinguishing number can be used to identify a jump in the possible speeds of hereditary classes of graphs at the sequence of Bell numbers. We prove that every hereditary class that lies above the Bell numbers and has finite distinguishing number contains a boundary class for well-quasi-ordering. This means t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2015